31 research outputs found

    Prefrontal rhythms for cognitive control

    Get PDF
    Goal-directed behavior requires flexible selection among action plans and updating behavioral strategies when they fail to achieve desired goals. Lateral prefrontal cortex (LPFC) is implicated in the execution of behavior-guiding rule-based cognitive control while anterior cingulate cortex (ACC) is implicated in monitoring processes and updating rules. Rule-based cognitive control requires selective processing while process monitoring benefits from combinatorial processing. I used a combination of computational and experimental methods to investigate how network oscillations and neuronal heterogeneity contribute to cognitive control through their effects on selective versus combinatorial processing modes in LPFC and ACC. First, I adapted an existing LPFC model to explore input frequency- and coherence-based output selection mechanisms for flexible routing of rate-coded signals. I show that the oscillatory states of input encoding populations can exhibit a stronger influence over downstream competition than their activity levels. This enables an output driven by a weaker resonant input signal to suppress lower-frequency competing responses to stronger, less resonant (though possibly higher-frequency) input signals. While signals are encoded in population firing rates, output selection and signal routing can be governed independently by the frequency and coherence of oscillatory inputs and their correspondence with output resonant properties. Flexible response selection and gating can be achieved by oscillatory state control mechanisms operating on input encoding populations. These dynamic mechanisms enable experimentally-observed LPFC beta and gamma oscillations to flexibly govern the selection and gating of rate-coded signals for downstream read-out. Furthermore, I demonstrate how differential drives to distinct interneuron populations can switch working memory representations between asynchronous and oscillatory states that support rule-based selection. Next, I analyzed physiological data from the LeBeau laboratory and built a de novo model constrained by the biological data. Experimental data demonstrated that fast network oscillations at both the beta- and gamma frequency bands could be elicited in vitro in ACC and neurons exhibited a wide range of intrinsic properties. Computational modeling of the ACC network revealed that the frequency of network oscillation generated was dependent upon the time course of inhibition. Principal cell heterogeneity broadened the range of frequencies generated by the model network. In addition, with different frequency inputs to two neuronal assemblies, heterogeneity decreased competition and increased spike coherence between the networks thus conferring a combinatorial advantage to the network. These findings suggest that oscillating neuronal populations can support either response selection (routing), or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances. Such differences may support functional differences between the roles of LPFC and ACC in cognitive control

    DynaSim: a MATLAB toolbox for neural modeling and simulation

    Get PDF
    [EN] DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.This material is based upon research supported by the U.S. Army Research Office under award number ARO W911NF-12-R-0012-02, the U.S. Office of Naval Research under award number ONR MURI N00014-16-1-2832, and the National Science Foundation under award number NSF DMS-1042134 (Cognitive Rhythms Collaborative: A Discovery Network)Sherfey, JS.; Soplata, AE.; Ardid-Ramírez, JS.; Roberts, EA.; Stanley, DA.; Pittman-Polletta, BR.; Kopell, NJ. (2018). DynaSim: a MATLAB toolbox for neural modeling and simulation. Frontiers in Neuroinformatics. 12:1-15. https://doi.org/10.3389/fninf.2018.00010S11512Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., & Mitra, P. P. (2010). Chronux: A platform for analyzing neural signals. Journal of Neuroscience Methods, 192(1), 146-151. doi:10.1016/j.jneumeth.2010.06.020Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., … Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349-398. doi:10.1007/s10827-007-0038-6Börgers, C., & Kopell, N. (2005). Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons. Neural Computation, 17(3), 557-608. doi:10.1162/0899766053019908Ching, S., Cimenser, A., Purdon, P. L., Brown, E. N., & Kopell, N. J. (2010). Thalamocortical model for a propofol-induced  -rhythm associated with loss of consciousness. Proceedings of the National Academy of Sciences, 107(52), 22665-22670. doi:10.1073/pnas.1017069108Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3(S11), 1184-1191. doi:10.1038/81460EatonJ. W. BatemanD. HaubergS. WehbringR. GNU Octave Version 4.2.0 Manual: A High-Level Interactive Language for Numerical Computations2016Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems. doi:10.1137/1.9780898718195FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. The Bulletin of Mathematical Biophysics, 17(4), 257-278. doi:10.1007/bf02477753Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia, 2(4), 1430. doi:10.4249/scholarpedia.1430Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., … Silver, R. A. (2010). NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail. PLoS Computational Biology, 6(6), e1000815. doi:10.1371/journal.pcbi.1000815Goodman, D. (2008). Brian: a simulator for spiking neural networks in Python. Frontiers in Neuroinformatics, 2. doi:10.3389/neuro.11.005.2008Goodman, D. F. M. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192-197. doi:10.3389/neuro.01.026.2009Hines, M. L., & Carnevale, N. T. (1997). The NEURON Simulation Environment. Neural Computation, 9(6), 1179-1209. doi:10.1162/neco.1997.9.6.1179Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., … Wang. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524-531. doi:10.1093/bioinformatics/btg015Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569-1572. doi:10.1109/tnn.2003.820440Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences, 97(4), 1867-1872. doi:10.1073/pnas.97.4.1867Kramer, M. A., Roopun, A. K., Carracedo, L. M., Traub, R. D., Whittington, M. A., & Kopell, N. J. (2008). Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex. PLoS Computational Biology, 4(9), e1000169. doi:10.1371/journal.pcbi.1000169Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130-141. doi:10.1175/1520-0469(1963)0202.0.co;2Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., … Saria, A. (2011). Introducing the Human Brain Project. Procedia Computer Science, 7, 39-42. doi:10.1016/j.procs.2011.12.015McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., … Hines, M. L. (2016). Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. Journal of Computational Neuroscience, 42(1), 1-10. doi:10.1007/s10827-016-0623-7Meng, L., Kramer, M. A., Middleton, S. J., Whittington, M. A., & Eden, U. T. (2014). A Unified Approach to Linking Experimental, Statistical and Computational Analysis of Spike Train Data. PLoS ONE, 9(1), e85269. doi:10.1371/journal.pone.0085269Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193-213. doi:10.1016/s0006-3495(81)84782-0Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70(10-12), 1966-1969. doi:10.1016/j.neucom.2006.10.138Stimberg, M., Goodman, D. F. M., Benichoux, V., & Brette, R. (2014). Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics, 8. doi:10.3389/fninf.2014.00006Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast Rhythmic Bursting Can Be Induced in Layer 2/3 Cortical Neurons by Enhancing Persistent Na+Conductance or by Blocking BK Channels. Journal of Neurophysiology, 89(2), 909-921. doi:10.1152/jn.00573.200

    Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity.

    Get PDF
    The anterior cingulate cortex (ACC) is vital for a range of brain functions requiring cognitive control and has highly divergent inputs and outputs, thus manifesting as a hub in connectomic analyses. Studies show diverse functional interactions within the ACC are associated with network oscillations in the β (20-30 Hz) and γ (30-80 Hz) frequency range. Oscillations permit dynamic routing of information within cortex, a function that depends on bandpass filter-like behavior to selectively respond to specific inputs. However, a putative hub region such as ACC needs to be able to combine inputs from multiple sources rather than select a single input at the expense of others. To address this potential functional dichotomy, we modeled local ACC network dynamics in the rat in vitro. Modal peak oscillation frequencies in the β- and γ-frequency band corresponded to GABAAergic synaptic kinetics as seen in other regions; however, the intrinsic properties of ACC principal neurons were highly diverse. Computational modeling predicted that this neuronal response diversity broadened the bandwidth for filtering rhythmic inputs and supported combination-rather than selection-of different frequencies within the canonical γ and β electroencephalograph bands. These findings suggest that oscillating neuronal populations can support either response selection (routing) or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances.Wellcome Trus

    Flexible resonance in prefrontal networks with strong feedback inhibition

    Get PDF
    [EN] Oscillations are ubiquitous features of brain dynamics that undergo task-related changes in synchrony, power, and frequency. The impact of those changes on target networks is poorly understood. In this work, we used a biophysically detailed model of prefrontal cortex (PFC) to explore the effects of varying the spike rate, synchrony, and waveform of strong oscillatory inputs on the behavior of cortical networks driven by them. Interacting populations of excitatory and inhibitory neurons with strong feedback inhibition are inhibition-based network oscillators that exhibit resonance (i.e., larger responses to preferred input frequencies). We quantified network responses in terms of mean firing rates and the population frequency of network oscillation; and characterized their behavior in terms of the natural response to asynchronous input and the resonant response to oscillatory inputs. We show that strong feedback inhibition causes the PFC to generate internal (natural) oscillations in the beta/gamma frequency range (>15 Hz) and to maximize principal cell spiking in response to external oscillations at slightly higher frequencies. Importantly, we found that the fastest oscillation frequency that can be relayed by the network maximizes local inhibition and is equal to a frequency even higher than that which maximizes the firing rate of excitatory cells; we call this phenomenon population frequency resonance. This form of resonance is shown to determine the optimal driving frequency for suppressing responses to asynchronous activity. Lastly, we demonstrate that the natural and resonant frequencies can be tuned by changes in neuronal excitability, the duration of feedback inhibition, and dynamic properties of the input. Our results predict that PFC networks are tuned for generating and selectively responding to beta- and gamma-rhythmic signals due to the natural and resonant properties of inhibition-based oscillators. They also suggest strategies for optimizing transcranial stimulation and using oscillatory networks in neuromorphic engineering.This material is based upon research supported by the U. S. Army Research Office under award number ARO W911NF-12-R-0012-02 to N. K., the U. S. Office of Naval Research under award number ONR MURI N00014-16-1-2832 to M. H., and the National Science Foundation under award number NSF DMS-1042134 (Cognitive Rhythms Collaborative: A Discovery Network) to N. K. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Sherfey, JS.; Ardid-Ramírez, JS.; Hass, J.; Hasselmo, ME.; Kopell, NJ. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLoS Computational Biology. 14(8). https://doi.org/10.1371/journal.pcbi.1006357S148Whittington, M. A., Traub, R. D., & Jefferys, J. G. R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373(6515), 612-615. doi:10.1038/373612a0Randall, F. E., Whittington, M. A., & Cunningham, M. O. (2011). Fast oscillatory activity induced by kainate receptor activation in the rat basolateral amygdala in vitro. European Journal of Neuroscience, 33(5), 914-922. doi:10.1111/j.1460-9568.2010.07582.xRoux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory. Journal of Neuroscience, 32(36), 12411-12420. doi:10.1523/jneurosci.0421-12.2012Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 76(4), 838-846. doi:10.1016/j.neuron.2012.09.029Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3), 325-340. doi:10.1016/s0896-6273(02)00586-xCannon, J., McCarthy, M. M., Lee, S., Lee, J., Börgers, C., Whittington, M. A., & Kopell, N. (2013). Neurosystems: brain rhythms and cognitive processing. European Journal of Neuroscience, 39(5), 705-719. doi:10.1111/ejn.12453Rotstein, H. G., & Nadim, F. (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37(1), 9-28. doi:10.1007/s10827-013-0483-3Rotstein, H. G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: Nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38(2), 325-354. doi:10.1007/s10827-014-0544-2Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019Ledoux, E., & Brunel, N. (2011). Dynamics of Networks of Excitatory and Inhibitory Neurons in Response to Time-Dependent Inputs. Frontiers in Computational Neuroscience, 5. doi:10.3389/fncom.2011.00025Whittington, M. ., Traub, R. ., Kopell, N., Ermentrout, B., & Buhl, E. . (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38(3), 315-336. doi:10.1016/s0167-8760(00)00173-2Börgers, C., & Kopell, N. (2005). Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons. Neural Computation, 17(3), 557-608. doi:10.1162/0899766053019908Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926-1929. doi:10.1126/science.1099745Hahn, G., Bujan, A. F., Frégnac, Y., Aertsen, A., & Kumar, A. (2014). Communication through Resonance in Spiking Neuronal Networks. PLoS Computational Biology, 10(8), e1003811. doi:10.1371/journal.pcbi.1003811Womelsdorf, T., Ardid, S., Everling, S., & Valiante, T. A. (2014). Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control. Current Biology, 24(22), 2613-2621. doi:10.1016/j.cub.2014.09.046Buschman, T. J., & Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science, 315(5820), 1860-1862. doi:10.1126/science.1138071Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216-222. doi:10.1016/j.conb.2012.11.011Haegens, S., Nacher, V., Hernandez, A., Luna, R., Jensen, O., & Romo, R. (2011). Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proceedings of the National Academy of Sciences, 108(26), 10708-10713. doi:10.1073/pnas.1107297108Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134. doi:10.1038/nrn3137Thut, G., & Miniussi, C. (2009). New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences, 13(4), 182-189. doi:10.1016/j.tics.2009.01.004Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00279Dowsett, J., & Herrmann, C. S. (2016). Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording. Frontiers in Human Neuroscience, 10. doi:10.3389/fnhum.2016.00135Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 5(4), 505-511. doi:10.1016/j.brs.2011.11.004Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010). The Asynchronous State in Cortical Circuits. Science, 327(5965), 587-590. doi:10.1126/science.1179850Wang, X.-J. (1999). Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory. The Journal of Neuroscience, 19(21), 9587-9603. doi:10.1523/jneurosci.19-21-09587.1999Tegnér, J., Compte, A., & Wang, X.-J. (2002). The dynamical stability of reverberatory neural circuits. Biological Cybernetics, 87(5-6), 471-481. doi:10.1007/s00422-002-0363-9Giulioni, M., Camilleri, P., Mattia, M., Dante, V., Braun, J., & Del Giudice, P. (2012). Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI. Frontiers in Neuroscience, 5. doi:10.3389/fnins.2011.00149Compte, A. (2000). Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model. Cerebral Cortex, 10(9), 910-923. doi:10.1093/cercor/10.9.910Ardid, S., Wang, X.-J., Gomez-Cabrero, D., & Compte, A. (2010). Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas. Journal of Neuroscience, 30(8), 2856-2870. doi:10.1523/jneurosci.4222-09.2010Bastos AM, Loonis R, Kornblith S, Lundqvist M, Miller EK (2018) Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proceedings of the National Academy of Sciences: 201710323.Shin, D., & Cho, K.-H. (2013). Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication. Scientific Reports, 3(1). doi:10.1038/srep02519Dong, Y., & White, F. J. (2003). Dopamine D1-Class Receptors Selectively Modulate a Slowly Inactivating Potassium Current in Rat Medial Prefrontal Cortex Pyramidal Neurons. The Journal of Neuroscience, 23(7), 2686-2695. doi:10.1523/jneurosci.23-07-02686.2003Bloem, B., Poorthuis, R. B., & Mansvelder, H. D. (2014). Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Frontiers in Neural Circuits, 8. doi:10.3389/fncir.2014.00017Jimenez-Fernandez, A., Cerezuela-Escudero, E., Miro-Amarante, L., Dominguez-Moralse, M. J., de Asis Gomez-Rodriguez, F., Linares-Barranco, A., & Jimenez-Moreno, G. (2017). A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach. IEEE Transactions on Neural Networks and Learning Systems, 28(4), 804-818. doi:10.1109/tnnls.2016.2583223Lande, T. S. (Ed.). (1998). Neuromorphic Systems Engineering. The Springer International Series in Engineering and Computer Science. doi:10.1007/b102308Liu, S.-C., & Delbruck, T. (2010). Neuromorphic sensory systems. Current Opinion in Neurobiology, 20(3), 288-295. doi:10.1016/j.conb.2010.03.007Richardson, M. J. E., Brunel, N., & Hakim, V. (2003). From Subthreshold to Firing-Rate Resonance. Journal of Neurophysiology, 89(5), 2538-2554. doi:10.1152/jn.00955.2002Chen, Y., Li, X., Rotstein, H. G., & Nadim, F. (2016). Membrane potential resonance frequency directly influences network frequency through electrical coupling. Journal of Neurophysiology, 116(4), 1554-1563. doi:10.1152/jn.00361.2016Lea-Carnall, C. A., Montemurro, M. A., Trujillo-Barreto, N. J., Parkes, L. M., & El-Deredy, W. (2016). Cortical Resonance Frequencies Emerge from Network Size and Connectivity. PLOS Computational Biology, 12(2), e1004740. doi:10.1371/journal.pcbi.1004740Adams, N. E., Sherfey, J. S., Kopell, N. J., Whittington, M. A., & LeBeau, F. E. N. (2017). Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity. eneuro, 4(1), ENEURO.0313-16.2017. doi:10.1523/eneuro.0313-16.2017Cannon, J., & Kopell, N. (2015). The Leaky Oscillator: Properties of Inhibition-Based Rhythms Revealed through the Singular Phase Response Curve. SIAM Journal on Applied Dynamical Systems, 14(4), 1930-1977. doi:10.1137/140977151Olufsen, M. S., Whittington, M. A., Camperi, M., & Kopell, N. (2003). Journal of Computational Neuroscience, 14(1), 33-54. doi:10.1023/a:1021124317706Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15(4-6), 561-572. doi:10.1016/s0893-6080(02)00049-7Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-Mediated Stabilization of Delay-Period Activity in a Network Model of Prefrontal Cortex. Journal of Neurophysiology, 83(3), 1733-1750. doi:10.1152/jn.2000.83.3.1733Nunez, P. L., & Srinivasan, R. (2006). Electric Fields of the Brain. doi:10.1093/acprof:oso/9780195050387.001.0001Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B. R., & Kopell, N. J. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.0001

    Prefrontal oscillations modulate the propagation of neuronal activity required for working memory

    Full text link
    [EN] Cognition involves using attended information, maintained in working memory (WM), to guide action. During a cognitive task, a correct response requires flexible, selective gating so that only the appropriate information flows from WM to downstream effectors that carry out the response. In this work, we used biophysically-detailed modeling to explore the hypothesis that network oscillations in prefrontal cortex (PFC), leveraging local inhibition, can independently gate responses to items in WM. The key role of local inhibition was to control the period between spike bursts in the outputs, and to produce an oscillatory response no matter whether the WM item was maintained in an asynchronous or oscillatory state. We found that the WM item that induced an oscillatory population response in the PFC output layer with the shortest period between spike bursts was most reliably propagated. The network resonant frequency (i.e., the input frequency that produces the largest response) of the output layer can be flexibly tuned by varying the excitability of deep layer principal cells. Our model suggests that experimentally-observed modulation of PFC beta-frequency (15-30 Hz) and gamma -frequency (30-80 Hz) oscillations could leverage network resonance and local inhibition to govern the flexible routing of signals in service to cognitive processes like gating outputs from working memory and the selection of rule-based actions. Importantly, we show for the first time that nonspecific changes in deep layer excitability can tune the output gate's resonant frequency, enabling the specific selection of signals encoded by populations in asynchronous or fast oscillatory states. More generally, this represents a dynamic mechanism by which adjusting network excitability can govern the propagation of asynchronous and oscillatory signals throughout neocortex.This work was supported by the U.S. Army Research Office under award number ARO W911NF-12-R-0012-02 to N. K., the U.S. Office of Naval Research under award number ONR MURI N00014-16-1-2832 to M. H. and E. M., the National Institute of Mental Health under award number NIMH R37MH087027 to E. M., and The MIT Picower Institute Faculty Innovation Fund to E. M. We would like to acknowledge Joachim Hass and Michelle McCarthy for early discussions of our modeling results, as well as Andre Bastos and Mikael Lundqvist for discussions relating our modeling work to their experiments.Sherfey, J.; Ardid-Ramírez, JS.; Miller, EK.; Hasselmo, ME.; Kopell, NJ. (2020). Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. Neurobiology of Learning and Memory. 173:1-13. https://doi.org/10.1016/j.nlm.2020.107228113173Adams, N. E., Sherfey, J. S., Kopell, N. J., Whittington, M. A., & LeBeau, F. E. N. (2017). Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity. eneuro, 4(1), ENEURO.0313-16.2017. doi:10.1523/eneuro.0313-16.2017Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019Amiez, C., Joseph, J.-P., & Procyk, E. (2005). Anterior cingulate error-related activity is modulated by predicted reward. European Journal of Neuroscience, 21(12), 3447-3452. doi:10.1111/j.1460-9568.2005.04170.xArdid, S., Sherfey, J. S., McCarthy, M. M., Hass, J., Pittman-Polletta, B. R., & Kopell, N. (2019). Biased competition in the absence of input bias revealed through corticostriatal computation. Proceedings of the National Academy of Sciences, 116(17), 8564-8569. doi:10.1073/pnas.1812535116Ardid, S., & Wang, X.-J. (2013). A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. Journal of Neuroscience, 33(50), 19504-19517. doi:10.1523/jneurosci.1356-13.2013Ardid, S., Wang, X.-J., & Compte, A. (2007). An Integrated Microcircuit Model of Attentional Processing in the Neocortex. Journal of Neuroscience, 27(32), 8486-8495. doi:10.1523/jneurosci.1145-07.2007Ardid, S., Wang, X.-J., Gomez-Cabrero, D., & Compte, A. (2010). Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas. Journal of Neuroscience, 30(8), 2856-2870. doi:10.1523/jneurosci.4222-09.2010Baddeley, A. D. and Hitch, G. (1974). Working Memory. In Bower, G.H., editor, Psychology of Learning and Motivation, volume 8, pages 47–89. Academic Press.Badre, D., & Frank, M. J. (2011). Mechanisms of Hierarchical Reinforcement Learning in Cortico-Striatal Circuits 2: Evidence from fMRI. Cerebral Cortex, 22(3), 527-536. doi:10.1093/cercor/bhr117Barbas, H. (2015). General Cortical and Special Prefrontal Connections: Principles from Structure to Function. Annual Review of Neuroscience, 38(1), 269-289. doi:10.1146/annurev-neuro-071714-033936Bhandari, A., & Badre, D. (2018). Learning and transfer of working memory gating policies. Cognition, 172, 89-100. doi:10.1016/j.cognition.2017.12.001Brette, R., & Guigon, E. (2003). Reliability of Spike Timing Is a General Property of Spiking Model Neurons. Neural Computation, 15(2), 279-308. doi:10.1162/089976603762552924Börgers, C., & Kopell, N. (2005). Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons. Neural Computation, 17(3), 557-608. doi:10.1162/0899766053019908Brincat, S. L., & Miller, E. K. (2016). Prefrontal Cortex Networks Shift from External to Internal Modes during Learning. Journal of Neuroscience, 36(37), 9739-9754. doi:10.1523/jneurosci.0274-16.2016Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 76(4), 838-846. doi:10.1016/j.neuron.2012.09.029Cannon, J., McCarthy, M. M., Lee, S., Lee, J., Börgers, C., Whittington, M. A., & Kopell, N. (2013). Neurosystems: brain rhythms and cognitive processing. European Journal of Neuroscience, 39(5), 705-719. doi:10.1111/ejn.12453Cho, R. Y., Konecky, R. O., & Carter, C. S. (2006). Impairments in frontal cortical   synchrony and cognitive control in schizophrenia. Proceedings of the National Academy of Sciences, 103(52), 19878-19883. doi:10.1073/pnas.0609440103Compte, A. (2000). Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model. Cerebral Cortex, 10(9), 910-923. doi:10.1093/cercor/10.9.910DeFelipe, J. (1997). Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of Chemical Neuroanatomy, 14(1), 1-19. doi:10.1016/s0891-0618(97)10013-8Douglas, R. J., & Martin, K. A. C. (2004). NEURONAL CIRCUITS OF THE NEOCORTEX. Annual Review of Neuroscience, 27(1), 419-451. doi:10.1146/annurev.neuro.27.070203.144152Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15(4-6), 561-572. doi:10.1016/s0893-6080(02)00049-7Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-Mediated Stabilization of Delay-Period Activity in a Network Model of Prefrontal Cortex. Journal of Neurophysiology, 83(3), 1733-1750. doi:10.1152/jn.2000.83.3.1733Frank, M. J., & Badre, D. (2011). Mechanisms of Hierarchical Reinforcement Learning in Corticostriatal Circuits 1: Computational Analysis. Cerebral Cortex, 22(3), 509-526. doi:10.1093/cercor/bhr114FRANK, M. J., LOUGHRY, B., & O’REILLY, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 137-160. doi:10.3758/cabn.1.2.137Hasselmo, M. E., & Stern, C. E. (2018). A network model of behavioural performance in a rule learning task. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1744), 20170275. doi:10.1098/rstb.2017.0275Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Kaski, S., & Kohonen, T. (1994). Winner-take-all networks for physiological models of competitive learning. Neural Networks, 7(6-7), 973-984. doi:10.1016/s0893-6080(05)80154-6Kerns, J. G., Cohen, J. D., MacDonald, A.W., Cho, R.Y., Stenger, V.A., and Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science (New York, N.Y.), 303(5660):1023–1026.Komorowski, R. W., Garcia, C. G., Wilson, A., Hattori, S., Howard, M. W., & Eichenbaum, H. (2013). Ventral Hippocampal Neurons Are Shaped by Experience to Represent Behaviorally Relevant Contexts. Journal of Neuroscience, 33(18), 8079-8087. doi:10.1523/jneurosci.5458-12.2013Kriete, T., & Noelle, D. C. (2011). Generalisation benefits of output gating in a model of prefrontal cortex. Connection Science, 23(2), 119-129. doi:10.1080/09540091.2011.569881Kritzer, M. F., & Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 359(1), 131-143. doi:10.1002/cne.903590109Levitt, J. B., Lewis, D. A., Yoshioka, T., & Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). The Journal of Comparative Neurology, 338(3), 360-376. doi:10.1002/cne.903380304Lundqvist, M., Compte, A., & Lansner, A. (2010). Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network. PLoS Computational Biology, 6(6), e1000803. doi:10.1371/journal.pcbi.1000803Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications, 9(1). doi:10.1038/s41467-017-02791-8Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016). Gamma and Beta Bursts Underlie Working Memory. Neuron, 90(1), 152-164. doi:10.1016/j.neuron.2016.02.028Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78-84. doi:10.1038/nature12742Melrose, R. J., Poulin, R. M., & Stern, C. E. (2007). An fMRI investigation of the role of the basal ganglia in reasoning. Brain Research, 1142, 146-158. doi:10.1016/j.brainres.2007.01.060Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59-65. doi:10.1038/35036228O’Reilly, R. C., & Frank, M. J. (2006). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation, 18(2), 283-328. doi:10.1162/089976606775093909Parnaudeau, S., O’Neill, P.-K., Bolkan, S. S., Ward, R. D., Abbas, A. I., Roth, B. L., … Kellendonk, C. (2013). Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron, 77(6), 1151-1162. doi:10.1016/j.neuron.2013.01.038Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the Brain: The Neurophysics of EEG. Oxford University Press. Google-Books-ID: fUv54as56_8C.Renart, A., Rocha, J. d. l., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K. D. (2010). The Asynchronous State in Cortical Circuits. Science, 327(5965):587–590.Richardson, M. J. E., Brunel, N., & Hakim, V. (2003). From Subthreshold to Firing-Rate Resonance. Journal of Neurophysiology, 89(5), 2538-2554. doi:10.1152/jn.00955.2002Rotstein, H. G. (2017). Spiking Resonances In Models With The Same Slow Resonant And Fast Amplifying Currents But Different Subthreshold Dynamic Properties. bioRxiv, page 128611.Seamans, J. K., Lapish, C. C., & Durstewitz, D. (2008). Comparing the prefrontal cortex of rats and primates: Insights from electrophysiology. Neurotoxicity Research, 14(2-3), 249-262. doi:10.1007/bf03033814Shen, Z., Popov, V., Delahay, A. B., & Reder, L. M. (2017). Item strength affects working memory capacity. Memory & Cognition, 46(2), 204-215. doi:10.3758/s13421-017-0758-4Sherfey, J. S., Ardid, S., Hass, J., Hasselmo, M. E., & Kopell, N. J. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLOS Computational Biology, 14(8), e1006357. doi:10.1371/journal.pcbi.1006357Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B.R., and Kopell, N.J. (2018b). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics, 12.Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106(50), 21341-21346. doi:10.1073/pnas.0908193106Tegnér, J., Compte, A., & Wang, X.-J. (2002). The dynamical stability of reverberatory neural circuits. Biological Cybernetics, 87(5-6), 471-481. doi:10.1007/s00422-002-0363-9Tzur, G., & Berger, A. (2009). Fast and slow brain rhythms in rule/expectation violation tasks: Focusing on evaluation processes by excluding motor action. Behavioural Brain Research, 198(2), 420-428. doi:10.1016/j.bbr.2008.11.041Zhu, H., Paschalidis, I. C., Chang, A., Stern, C. E., & Hasselmo, M. E. (2020). A neural circuit model for a contextual association task inspired by recommender systems. Hippocampus, 30(4), 384-395. doi:10.1002/hipo.23194Zhu, H., Paschalidis, I. C., & Hasselmo, M. E. (2018). Neural circuits for learning context-dependent associations of stimuli. Neural Networks, 107, 48-60. doi:10.1016/j.neunet.2018.07.01

    Biased competition in the absence of input bias revealed through corticostriatal computation

    Full text link
    [EN] Classical accounts of biased competition require an input bias to resolve the competition between neuronal ensembles driving downstream processing. However, flexible and reliable selection of behaviorally relevant ensembles can occur with unbiased stimulation: striatal D1 and D2 spiny projection neurons (SPNs) receive balanced cortical input, yet their activity determines the choice between GO and NO-GO pathways in the basal ganglia. We here present a corticostriatal model identifying three mechanisms that rely on physiological asymmetries to effect rate- and time-coded biased competition in the presence of balanced inputs. First, tonic input strength determines which one of the two SPN phenotypes exhibits a higher mean firing rate. Second, low-strength oscillatory inputs induce higher firing rate in D2 SPNs but higher coherence between D1 SPNs. Third, high-strength inputs oscillating at distinct frequencies can preferentially activate D1 or D2 SPN populations. Of these mechanisms, only the latter accommodates observed rhythmic activity supporting rule-based decision making in prefrontal cortexWe thank T. Womelsdorf for helpful suggestions on an earlier version of the manuscript. We also thank the two reviewers for the constructive comments that enhanced the quality of the manuscript. In particular, their question regarding the resonant properties of SPNs under distinct mean input helped us to uncover how the resonance of D2 SPNs shifts in frequency space (Fig. 3E). Our research was supported by the Army Research Office (ARO) Grant W911NF-12-R-0012-02 (to N.K.). Additionally, S.A. and N.K. were supported by NSF Grant DMS-1042134, and M.M.M. was supported by the Collaborative Research in Computational Neuroscience (CRCNS) NIH Grant CRCNS 1R01N5081716Ardid-Ramírez, JS.; Sherfey, JS.; Mccarthy, MM.; Hass, J.; Pittman-Polletta, BR.; Kopell, N. (2019). Biased competition in the absence of input bias revealed through corticostriatal computation. Proceedings of the National Academy of Sciences. 116(17):8564-8569. https://doi.org/10.1073/pnas.1812535116S8564856911617Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1245-1255. doi:10.1098/rstb.1998.0280Deco, G., & Rolls, E. T. (2005). Neurodynamics of Biased Competition and Cooperation for Attention: A Model With Spiking Neurons. Journal of Neurophysiology, 94(1), 295-313. doi:10.1152/jn.01095.2004Ardid, S., Wang, X.-J., & Compte, A. (2007). An Integrated Microcircuit Model of Attentional Processing in the Neocortex. Journal of Neuroscience, 27(32), 8486-8495. doi:10.1523/jneurosci.1145-07.2007Börgers, C., Epstein, S., & Kopell, N. J. (2008). Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceedings of the National Academy of Sciences, 105(46), 18023-18028. doi:10.1073/pnas.0809511105Buia, C. I., & Tiesinga, P. H. (2008). Role of Interneuron Diversity in the Cortical Microcircuit for Attention. Journal of Neurophysiology, 99(5), 2158-2182. doi:10.1152/jn.01004.2007Ardid, S., Wang, X.-J., Gomez-Cabrero, D., & Compte, A. (2010). Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas. Journal of Neuroscience, 30(8), 2856-2870. doi:10.1523/jneurosci.4222-09.2010Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366-375. doi:10.1016/0166-2236(89)90074-xAlexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266-271. doi:10.1016/0166-2236(90)90107-lGerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., & Sibley, D. R. (1990). D 1 and D 2 Dopamine Receptor-regulated Gene Expression of Striatonigral and Striatopallidal Neurons. Science, 250(4986), 1429-1432. doi:10.1126/science.2147780Ballion, B., Mallet, N., Bézard, E., Lanciego, J. L., & Gonon, F. (2008). Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. European Journal of Neuroscience, 27(9), 2313-2321. doi:10.1111/j.1460-9568.2008.06192.xTaverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson’s Disease. Journal of Neuroscience, 28(21), 5504-5512. doi:10.1523/jneurosci.5493-07.2008Tecuapetla, F., Carrillo-Reid, L., Bargas, J., & Galarraga, E. (2007). Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses. Proceedings of the National Academy of Sciences, 104(24), 10258-10263. doi:10.1073/pnas.0703813104Arias-García, M. A., Tapia, D., Flores-Barrera, E., Pérez-Ortega, J. E., Bargas, J., & Galarraga, E. (2013). Duration differences of corticostriatal responses in striatal projection neurons depend on calcium activated potassium currents. Frontiers in Systems Neuroscience, 7. doi:10.3389/fnsys.2013.00063Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of Striatal Projection Systems by Dopamine. Annual Review of Neuroscience, 34(1), 441-466. doi:10.1146/annurev-neuro-061010-113641Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., & Costa, R. M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436), 238-242. doi:10.1038/nature11846Oldenburg, I. A., & Sabatini, B. L. (2015). Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron, 86(5), 1174-1181. doi:10.1016/j.neuron.2015.05.008Ardid, S., & Wang, X.-J. (2013). A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. Journal of Neuroscience, 33(50), 19504-19517. doi:10.1523/jneurosci.1356-13.2013Bogacz, R., Martin Moraud, E., Abdi, A., Magill, P. J., & Baufreton, J. (2016). Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLOS Computational Biology, 12(7), e1005004. doi:10.1371/journal.pcbi.1005004Asaad, W. F., Rainer, G., & Miller, E. K. (1998). Neural Activity in the Primate Prefrontal Cortex during Associative Learning. Neuron, 21(6), 1399-1407. doi:10.1016/s0896-6273(00)80658-3White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal cortex. Experimental Brain Research, 126(3), 315-335. doi:10.1007/s002210050740Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411(6840), 953-956. doi:10.1038/35082081Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science, 291(5502), 312-316. doi:10.1126/science.291.5502.312Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The Frontal Cortex-Basal Ganglia System in Primates. Critical Reviews™ in Neurobiology, 10(3-4), 317-356. doi:10.1615/critrevneurobiol.v10.i3-4.30Antzoulatos, E. G., & Miller, E. K. (2011). Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories. Neuron, 71(2), 243-249. doi:10.1016/j.neuron.2011.05.040Marquand, A. F., Haak, K. V., & Beckmann, C. F. (2017). Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nature Human Behaviour, 1(8). doi:10.1038/s41562-017-0146Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 76(4), 838-846. doi:10.1016/j.neuron.2012.09.029Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332-361. doi:10.1037/0033-295x.97.3.332Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences, 102(20), 7338-7343. doi:10.1073/pnas.0502455102Antzoulatos, E. G., & Miller, E. K. (2014). Increases in Functional Connectivity between Prefrontal Cortex and Striatum during Category Learning. Neuron, 83(1), 216-225. doi:10.1016/j.neuron.2014.05.005Börgers, C., & Kopell, N. (2003). Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity. Neural Computation, 15(3), 509-538. doi:10.1162/089976603321192059Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442-446. doi:10.1038/nature02116Bahuguna, J., Aertsen, A., & Kumar, A. (2015). Existence and Control of Go/No-Go Decision Transition Threshold in the Striatum. PLOS Computational Biology, 11(4), e1004233. doi:10.1371/journal.pcbi.1004233Ott, T., Jacob, S. N., & Nieder, A. (2014). Dopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons. Neuron, 84(6), 1317-1328. doi:10.1016/j.neuron.2014.11.012Sherfey, J. S., Ardid, S., Hass, J., Hasselmo, M. E., & Kopell, N. J. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLOS Computational Biology, 14(8), e1006357. doi:10.1371/journal.pcbi.1006357Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neuroscience, 12(4), 483-491. doi:10.1038/nn.2276Sherfey JS Ardid S Miller EK Hasselmo ME Kopell N (2019) Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. bioRxiv:10.1101/531574.Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B. R., & Kopell, N. J. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.0001

    Thalamocortical control of propofol phase-amplitude coupling

    Get PDF
    The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8–12 Hz), Slow Wave Oscillations (SWO, 0.1–1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To investigate both generation of the alpha rhythm and its PAC to SWO, we simulate a Hodgkin-Huxley network model of a hyperpolarized thalamus and corticothalamic inputs. We find, for the first time, that the model thalamic network is capable of independently generating the sustained alpha seen in propofol, which may then be relayed to cortex and expressed on the EEG. This dose-dependent sustained alpha critically relies on propofol GABAA potentiation to alter the intrinsic spindling mechanisms of the thalamus. Furthermore, the H-current conductance and background excitation of these thalamic cells must be within specific ranges to exhibit any intrinsic oscillations, including sustained alpha. We also find that, under corticothalamic SWO UP and DOWN states, thalamocortical output can exhibit maximum alpha power at either the peak or trough of this SWO; this implies the thalamus may be the source of propofol-induced PAC. Hyperpolarization level is the main determinant of whether the thalamus exhibits trough-max PAC, which is associated with lower propofol dose, or peak-max PAC, associated with higher dose. These findings suggest: the thalamus generates a novel rhythm under GABAA potentiation such as under propofol, its hyperpolarization may determine whether a patient experiences trough-max or peak-max PAC, and the thalamus is a critical component of propofol-induced cortical spectral phenomena. Changes to the thalamus may be a critical part of how propofol accomplishes its effects, including unconsciousness

    Performance measures.

    No full text
    <p>Accuracy, reaction times, and the percentage of trials on which participants corrected their responses immediately after an error (means ± standard errors) are shown for each task and beverage condition. The Stroop interference effect is indicated by lower accuracy and slower reaction times to conflict-inducing incongruous (INC) stimuli overall. Alcohol did not affect RTs, but participants responded less accurately and made more corrective responses on INC trials when intoxicated. Significant alcohol vs. placebo comparisons for each condition are marked, *p<0.05.</p

    Summary of ANOVAs of event-related theta for different ROIs (MEG), and Fz and Cz electrode locations (EEG).

    No full text
    <p>Included are the results for main effects and interactions of Condition and Beverage, conflict-related theta power (INCONG - CONG contrast) for alcohol and placebo, and beverage effect on conflict-related theta power (Alc - Plac x INCONG - CONG interaction).</p><p>ACC: anterior cingulate cortex; IFJ: inferior frontal junction; IFG: inferior frontal gyrus; SFG: superior frontal gyrus; PAR: parietal cortex. Conflict-related theta power is larger to INCONG than CONG in all cases. Significance level is indicated as follows:</p>*<p>p<0.05,</p>**<p>p<0.01,</p>***<p>p<0.001,</p>****<p>p<0.0001;</p>†<p>p<0.1.</p
    corecore